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Abstract

To improve the efficiency of HEp-2 cells classification and to reflect the signifi-
cance of deep learning in medical applications, this report presents the process of
developing two different classification models (based on CNN and Transformer
respectively) on the HEp-2 cell dataset (ICPR 2012) and reached the average
classification accuracy of 73.9% and 75.6%, which are close to the current state-of-
the-art of 81.2%. The evaluation and comparison of the result of two models are
also analyzed.

1 Background

As an important means to detect many diseases, indirect immunofluorescence (IIF) is widely used
in medical examinations. Traditionally, the IIF sample would be classified under the microscope
by professional examiners, hence the costs for time and labor are high. With the development of
computer vision in the past decade, different models are carried out to classify IIF images. To have a
uniform criterion on these models’ performance, HEp-2 cell dataset (ICPR 2012) was released in
2012, containing 1455 images of Hep-2 cells, which are typical as IIF images.

Many classification models have been developed to fit the HEp-2 cell dataset since its release. Most
of them are based on CNN and adopted two main stages of feature extraction and classification. Data
augmentation is widely applied and the train-valid splitting ratio is usually 5:5 in the previous works,
the reason should be the small size of the dataset for training. Average classification accuracy is
the widely accepted criteria for the model’s performance(10), and the current state-of-the-art was
achieved by Liu et al(6). of 81.2% ACA with a deep autoencoding-classification network in 2017.

2 Proposed Method

In this section, the basic information of the dataset will be introduced, and the proposed pre-processing
methods and networks will be explained.

2.1 Data Pre-processing

The original dataset contains 6 patterns of Hep-2 cells (categories) as Figure 1 indicates and is
originally divided into training and testing groups (721 and 734 images for each).The pixels and
proportions of the images are inconsistent and the distribution of the patterns are not equal as Figure
2 shows. All the images come with a label indicating the pattern stored in two csv files and a
black-white mask image which could help to remove the background of the raw image.

Since the mask is given for images both in the train set and the test set, its role in highlighting the
main body of the cell should be important for accuracy increment. The small size of the sample and
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the unequal distribution of patterns in the train set are expected to cause overfitting when training,
hence data augmentation techniques should be necessary for training.

(a) nucleolar  (b) homogeneous (c) coarse_speckled

(d) centromere (e) cytoplasmatic (f) fine_speckled

Figure 1: Example of Patterns
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Figure 2: Distribution of Patterns

2.2 Network

The two team members selected networks based on CNN and Transformer(11) respectively. The
networks are ConvNeXt (CNN) and Custom CoAtNet (Transformer).

ConvNeXt: ConvNeXt(8)) is a pure convolutional network developed by FaceBook and UC Berkeley
in 2022. It consists entirely of convolutional blocks like ResNet but borrowed some strategy from
Swin-Transformer(7), such as fewer activation layers and separate downsampling layers, which
granted it better performance than ResNet(5) and even than Swin-Transformer. Pretrained with
ImageNet-22K dataset, ConvNeXt-T achieved an accuracy of 82.1% on ImageNet, exceeding the
Swin Transformer (Swin-T, 81.3%) on the similar parameter scale. In the following experiments, the
specific network that will be applied is ConvNeXt-B.
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Figure 3: Structure of ConvNext

Custom CoAtNet: CoAtNet(3) is a special transformer network developed by Google in 2021,
which adopts both convolution and self-attention layers via simple relative attention. Pretrained with
JFT-3B dataset, it could achieve 90.88% accuracy on ImageNet. Benefitting from the adoption of
convolutional layers, it has greater generalization performance over other Transformer networks on
small datasets, which makes it suitable for the current dataset. Due to the scale of parameters of the
original network is large, a simplified version provided by timm package is applied. The parameters
could be referred in timm’s GitHub repository as the name of “coat-mini”.
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Figure 4: Structure of CoAtNet(3)

3 Plan & Experiment

In this section, the detailed plan of the experiment would be described.

3.1 Datasets

3.1.1 Mask processing

With the mask, the main body of the Hep-2 cells can be easily extracted and the background can
be removed. In most examinations, models trained and tested on masked images could achieve
0.3%-0.5% higher accuracy than those on unmasked images under the same configuration, hence
the two models obtained in this report are all based on masked image sets. When adding the mask,
whether each pixel’s color of the raw image is preserved depends on the corresponding mask pixel’s
color. If the corresponding mask pixel is white, the pixel’s color in the raw image remains, or the
pixel color is set to black (RGB=0). The process is illustrated in Figure 5.



(a) raw image (b) mask (c) after

Figure 5: Process of adding mask

3.1.2 Data augmentation

As a common means to improve the performance of classification models, data augmentation can
effectively improve the generalization ability of the model (reducing over-fitting), which is crucial
especially for training sets with a small number of samples. After several trials, both models applied a
combination of data augmentation methods which could achieve best result. The detailed approaches
are list in Table 1.

ConvNeXt-B Custom CoAtNet
ImageNet 22K | JFT-3B

2247 2242
RomdomErasing None p=0.5, scale = (0.02,0.33), ratio=(0.3,3.3)
RomdomHorizontal | p=0.5 p=0.5
Random VerticalFilp | p=0.5 p=0.5

brightness =(0.3,1.5), contrast=0.5,

Colorjitter None saturation=0.3, hue=0,01
Normalized (0.5,0.25) (0.5,0.25)

Cutout(4) YES None

RadomResizedCrop | None scale=(0.25,1.0), ratio=(0.75,1.33)
RandomRotation None None

Rand Augment YES None

Table 1: Data augmentation methods

The example of image transform in data augmentation is listed in Figure 6 and Figure 7. The listed
data augmentation steps take place when fetching batches and only affects the images in the train set.
The images in the valid set and test set will only be normalized in the same way as those in the train
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Figure 6: Example of augmented images in ConvNeXt pathway
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Figure 7: Example of augmented images in CoAtNet pathway

3.2 Training configures

The dataset split is necessary since the test set should be kept invisible before the end of training,
and the configure of optimization methods plays a key role in the models’ loss convergence when
training. The original train set was split to train and valid set on the ratio of 5:5. The weights of
the two networks are initialized with pre-trained models. In each epoch, the model with the highest
accuracy on the valid set will be saved. If the accuracy is the same, the model with lower loss will be
saved. Adam and AdamP are picked as the optimizers of the two models respectively. Cosine learning
rate schedulers are used by two models. Besides, learning rate warm-up, Cutmix(12), Mixup(13)),
Randaugment(2), and Label Smoothing(9) are used to reduce overfitting, which is important for
datasets in small size. Test Time Augmentation(l)) is also used in the ConvNeXt model to improve
accuracy. The detailed training configures are listed in Table 2.

ConvNeXt-B Custom CoAtNet
ImageNet-22K JFT-3B
2247 2247
Dataset split 5:5 predefined 5:5 predefined
Optimizer Adam AdamP
Loss function Soft Target Cross Entropy | Binary Cross Entropy
Base learning rate 4e-6 le-5
Weight decay 0 0.1
Optimizer momentum | 51,32 = 0.9,0.999 51, 52 =0.9,0.999
Batch size 32 16
Training epochs 30 50
Learning rate schedule | cosine decay cosine decay
Warm-up epochs 0 10
Warm-up schedule None linear
Label smoothing 0.1 None
Mixup 0.8 None
Cutmix 1.0 None
TTA YES None

Table 2: Training configures of models

4 Results and Evaluation

In this section, the result of 2 classification models on the test set and the critical evaluations will be
explained. Possible way to improve the models will also be discussed.

4.1 Classification Result

Fl-scores and average accuracy are widely accepted to evaluate the results of classification models.
The result of the models is shown in Table 3. Confusion Matrix is also an important method to
visualize classification results of supervised learning models. The F1-scores and average accuracy of
the 2 models are listed in Table 3, and the confusion matrices are illustrated in Figure 8.



ConvNeXt-B Custom CoAtNet
ImageNet-22K | JFT-3B
2242 2242

f1 score for nucleolar 0.78 0.80

f1 score for homogeneous 0.70 0.69

f1 score for coarse_speckled 0.75 0.86

f1 score for centromere 0.88 0.85

f1 score for cytoplasmatic 0.98 0.91

f1 score for fine_speckled 0.47 0.54

Average classification accuracy | 0.739 0.756

Table 3: F1 scores and average accuracy of the classification results
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Figure 8: Confusion Matrices of the classification results

4.2 Evaluation and Discussion

Regarding the results, there exists a slight gap between ConvNeXt-B and the custom CoAtNet on their
performance on the HEp-2 cell dataset 1CPR2012). The custom CoAtNet model is 2% higher than
the CovNeXt-B model on average accuracy. It could be attributed to the self-attention mechanism
that the CoAtNet adopts, which can have a better performance by pre-trained and rigorous data
augmentation(8). As a representative of pure convolutional networks, CovNeXt-B’s performance
exceeds many CNN models developed in previous works on the same dataset, which also shows the
potential of the convolutional networks.

Besides, it is believed that these two models have much potential for improvement on this dataset
since the pre-trained models adopted to initialize the weights are trained with photographs of common
objects in daily life (ImageNet and JFT-3B) instead of IIF images under the microscope, which
makes the extracted feathers could not fit the HEp-2 images well. One possible way to improve the
performance is to initialize the weights with a model pre-trained with large datasets of IIF images.
For example, the Hep-2 cell dataset (ICPR2014) could be a good candidate.

Looking into the F1 score and the confusion matrices, the two models’ accuracy is similarly low on
‘nucleolar’ and ‘fine_speckled’, but similarly high on ‘centromere’ and ‘cytoplasmatic’. Since the
latter two categories respectively have the most and the least images in the train set, and the number
of images in the remaining four categories is relatively close, the reason for the low accuracy on
‘nucleolar’ and ‘fine_speckled’ should simply be the small size of the training set instead of unequal
distribution of images in categories.

For further experiments, suggestions are: Using a pre-trained model with similar datasets, freezing
the feature extraction layers and applying fine-tuning with lower learning rate, applying learning rate
annealing. Undersampling and oversampling may help to unify the distribution of data, though it



should not the main problem as explained above. For more advanced training methods, the radius of
the cell could even be considered as a feature to learn.

5 Conclusions

The Hep-2 cell dataset ICPR2012) is a small dataset of IIF images which could be a criterion for
the accuracy of classification models and could contribute to the development of computer vision on
medical imaging analysis. Data augmentation plays a key role in the training process on this dataset.
Though the accuracy of the two models is 73.9% (ConvNeXt-B) and 75.6% (Custom CoAtNet)
which are lower than the current state-of-the-art (81.2%), the results are still excellent since the data
pre-processing for the two models is relatively simpler than these for the state-of-the-art. The close
accuracy between the two models has proofed that convolutional networks are still competitive in
computer vision. The two models are expected to achieve higher accuracy if the proposed methods
given in the discussion section are applied.
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A Appendix: Whole Train Set for Training

Another way of training is using the whole train set for training and the test set for validation. In this
way, the accuracy achieved would usually be higher, but would be considered to be tricky. The result
of training the Custom CoAtNet in this way is shown in the Table 4 and Figure 9.

f1 score for nucleolar 0.86
f1 score for homogeneous 0.78
f1 score for coarse_speckled 0.81
f1 score for centromere 0.93
f1 score for cytoplasmatic 0.86
f1 score for fine_speckled 0.52
Average classification accuracy | 0.802
Table 4: F1 scores and average accuracy of the classification result
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Figure 9: Confusion Matrix of the classification result
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